Large earthquakes are among the most dangerous natural disasters with potentially devastating effects on society and infrastructure across the globe. In order to better understand earthquakes, research in active tectonics aims at quantifying crustal deformation throughout the active fault’s earthquake cycles by studying geomorphic and stratigraphic evidence of recent and past earthquakes. The underlying assumption in this approach is that a fault’s current and previous seismic behavior is representative of its future behavior. Constraining a fault’s seismic behavior in such a manner requires high-resolution geomorphic and stratigraphic records that enable us to resolve the spatial and temporal characteristics of co-, post-, and interseismic phases, ideally over multiple earthquake cycles. Recent technological developments have dramatically increased not only the amount and resolution of topographic and geophysical survey data sets but also our ability to date stratigraphic units and geomorphic surfaces. These technological advances have enabled us to better understand the interplay between crustal deformation, earthquake ruptures, and their signature in geomorphic and stratigraphic records. In particular, the availability of high-resolution data sets from LiDAR, SfM, or geophysical surveys and the use of accurate dating methods such as cosmogenic or OSL dating allow us to quantitatively study surface deformation at high spatial resolution over large areas and at multiple time scales—from a few years to millions of years. In this special issue, we focus on the tectonic activity of active faults and the geomorphic processes in various tectonic regimes worldwide. It covers active tectonics, earthquake geology, remote sensing, tectonic geomorphology, Quaternary geochronology, geohazard, and seismology.