Summary
The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR‐associated (Cas)9 platform offers an efficient way of making precise genetic changes to the human genome. This can be employed for disruption, addition and correction of genes, thereby enabling a new class of genetic therapies that can be applied to haematological disorders. Here we review recent technological advances in the CRISPR/Cas9 methodology and applications in haematology for curing monogenic genetic disorders and for engineering novel chimeric antigen receptor (CAR) T cells to treat haematological malignancies. Furthermore, we discuss current challenges for full clinical implementation of CRISPR/Cas9, and reflect on future trajectories of the technology.