The use of thermally activated delayed fluorescence emitters and emitters that show preferential horizontal orientation of their transition dipole are two emerging strategies to enhance the efficiency of organic light-emitting diodes. We present the first example of a liquid crystalline multi-resonance thermally activated delayed fluorescent emitter, DiKTaLC. The neat film of DiKTaLC shows a photoluminescence quantum yield of 41%, a singlet-triplet energy gap, ΔEST, of 0.20 eV, and a delayed lifetime, τd, of 70.2 µs. The compound possesses a nematic discotic liquid crystalline phase between 80 °C and 110 °C. More importantly, the transition dipole moment of the spin-coated film shows preferential horizontal orientation, with an anisotropy factor, a, of 0.26. We thus demonstrate for the first time how self-assembly of a liquid crystalline TADF emitter can lead to the so-far elusive control of the orientation of the transition dipole in solution-processed films, which will be of relevance for high-performance solution-processed organic light-emitting diodes.