Under hypoxia, most of glucose is converted to secretory lactate, which leads to the lack of carbon source from glucose and thus the overuse of glutamine-carbon. However, under such a condition how glutamine nitrogen is disposed to avoid releasing potentially toxic ammonia remains to be determined. Here we identify a metabolic flux of glutamine to secretory dihydroorotate under hypoxia. We found that glutamine nitrogen is indispensable to nucleotide biosynthesis, but enriched in dihyroorotate and orotate rather than processing to its downstream uridine monophosphate under hypoxia. Dihyroorotate, not orotate, is then secreted out of cells. The specific metabolic pathway occurs in vivo and is required for tumor growth. Such a metabolic pathway renders glutamine mainly to acetyl coenzyme A for lipogenesis, with the rest carbon and nitrogen being safely removed. Our results reveal how glutamine carbon and nitrogen are coordinatively metabolized under hypoxia, and provide a comprehensive understanding on glutamine metabolism.Significance: Tumor cells often addict to glutamine, and particularly utilize its carbon for lipogenesis under hypoxia. We reveal that tumor cells package the excessive glutamine-nitrogen into secretory dihydroorotate, instead of toxic ammonia. This specifically reprogrammed pathway supports in vivo tumor growth, and could offer diagnostic markers and therapeutic targets for cancers.