The guided filter is a novel explicit image filtering method, which implements a smoothing filter on “flat patch” regions and ensures edge preserving on “high variance” regions. Recently, the guided filter has been successfully incorporated into the process of fuzzy c-means (FCM) to boost the clustering results of noisy images. However, the adaptability of the existing guided filter-based FCM methods to different images is deteriorated, as the factor
ε
of the guided filter is fixed to a scalar. To solve this issue, this paper proposes a new guided filter-based FCM method (IFCM_GF), in which the guidance image of the guided filter is adjusted by a newly defined influence factor
ρ
. By dynamically changing the impact factor
ρ
, the IFCM_GF acquires excellent segmentation results on various noisy images. Furthermore, to promote the segmentation accuracy of images with heavy noise and simplify the selection of the influence factor
ρ
, we further propose a morphological reconstruction-based improved FCM clustering algorithm with guided filter (MRIFCM_GF). In this approach, the original noisy image is reconstructed by the morphological reconstruction (MR) before clustering, and the IFCM_GF is performed on the reconstructed image by utilizing the adjusted guidance image. Due to the efficiency of the MR to remove noise, the MRIFCM_GF achieves better segmentation results than the IFCM_GF on images with heavy noise and the selection of the influence factor for the MRIFCM_GF is simple. Experiments demonstrate the effectiveness of the presented methods.