Due to the increasing demand for battery electric vehicles (BEVs), the need for vehicle battery raw materials is increasing. The traction battery (TB) of an electric vehicle, usually a lithium-ion battery (LIB), represents the largest share of a BEV’s CO2 footprint. To reduce this carbon footprint sustainably and to keep the raw materials within a closed loop economy, suitable and efficient recycling processes are essential. In this life cycle assessment (LCA), the ecological performance of a waterjet-based direct recycling process with minimal use of resources and energy is evaluated; only the recycling process is considered, waste treatment and credits for by-products are not part of the analysis. Primary data from a performing recycling company were mainly used for the modelling. The study concludes that the recycling of 1 kg of TB is associated with a global warming potential (GWP) of 158 g CO2 equivalents (CO2e). Mechanical removal using a water jet was identified as the main driver of the recycling process, followed by an air purification system. Compared to conventional hydro- or pyrometallurgical processes, this waterjet-based recycling process could be attributed an 8 to 26 times lower GWP. With 10% and 20% reuse of recyclate in new cells, the GWP of TBs could be reduced by 4% and 8%, respectively. It has been shown that this recycling approach can be classified as environmentally friendly.