BackgroundIn breast cancer endocrine therapy, post-therapy Ki-67 assay of biopsy material predicts recurrence-free survival but is invasive and prone to sampling error. [18F]Fluorodeoxyglucose (FDG) positron emission tomography (PET) has shown an early agonist or ‘flare’ response to tamoxifen and estradiol, but has not been tested in response to estrogen-lowering aromatase inhibitors (AIs). We hypothesized that decreased agonistic response to AIs would result in early FDG uptake decline. We also measured early response to trastuzumab (T), another targeted agent for breast cancer with differing mechanisms of action. Our study was designed to test for an early decline in FDG uptake in response to AI or T and to examine association with Ki-67 measures of early response.MethodsPatients with any stage of newly diagnosed or recurrent breast cancer were eligible and enrolled prior to initiation (or resumption) of AI or T therapy. FDG PET and tissue biopsy were planned before and after 2 weeks of AI or T therapy, with pretreatment archival tissue permitted. Cutoffs of ≥20% decline in standardized uptake value (SUV) as FDG PET early response and ≤5% post-treatment expression as Ki-67 early response were defined prior to analysis.ResultsForty-two patients enrolled, and 40 (28 AI, 12 T) completed serial FDG-PET imaging. Twenty-two patients (17 AI, 5 T) had newly diagnosed disease, and 23 (14 AI, 9 T) had metastatic disease (5 newly diagnosed). Post-treatment biopsy was performed in 25 patients (63%) and was either refused or not feasible in 15. Post-treatment biopsy yielded tumor in only 17/25 cases (14 AI, 3 T). Eleven of 14 AI patients with post-therapy tissue showed FDG PET early response, and there was 100% concordance of PET and post-therapy Ki-67 early response. For the T group, 6/12 showed an FDG PET early response, including 2/3 patients with post-therapy biopsy, all with Ki-67 >5%.ConclusionsSubstantial changes in FDG PET SUV occurred over 2 weeks of AI therapy and were associated with low post-therapy proliferation. SUV decline was seen in response to T, but few tissue samples were available to test association with Ki-67. Our results support further investigation of FDG PET as a biomarker for early response to AI therapy.