We have previously demonstrated the full-length gonococcal transferrin binding proteins (TbpA and TbpB) to be promising antigens in the development of a protective vaccine against Neisseria gonorrhoeae. In the current study we employed a genetic chimera approach fusing domains from TbpA and TbpB to the A2 domain of cholera toxin, which naturally binds in a non-covalent fashion to the B subunit of cholera toxin during assembly. For one construct, the N-terminal half of TbpB (NB) was fused to the A2 subunit of cholera toxin. In a second construct, the loop 2 region (L2) of TbpA was genetically fused between the NB domain and the A2 domain, generating a double chimera. Both chimeras were immunogenic and induced serum bactericidal and vaginal growthinhibiting antibodies. This study highlights the potential of using protective epitopes instead of fulllength proteins in the development of an efficacious gonococcal vaccine.