Ischemia/reperfusion (I/R) injury in the kidney involves hemodynamic and cellular dysfunctions as well as leukocyte infiltration. Functional recovery occurs via cell proliferation and/or migration. To determine the roles of hyaluronan (HA) and its main receptor CD44 in renal postischemic processes, we compared their localization and expression with that of neutrophils, macrophages, and PCNApositive (regenerative) cells as characterized by immunohistochemistry, up to 28 days after I/R in uninephrectomized rats. Observations covered all kidney zones, i.e. cortex (C), outer and inner stripes of outer medulla (OSOM, ISOM), and inner medulla (IM). In controls, HA was localized to the interstitium of IM and ISOM, and CD44 was mostly present on the basolateral membranes of collecting ducts in ISOM, the thin descending limb of Henle's loop and macula densa cells. After I/R, HA and CD44 staining appeared in C and OSOM at 12 h and persisted throughout the regenerative period, i.e. until day 7. Thereafter, they regressed but remained associated with remodeling areas. CD44 expression was found de novo on the apical pole of regenerating, not fully differentiated tubular cells and on some interstitial cells. It was prominent on all infiltrating neutrophils, as soon as 2 h post-I/R, and on 30% of the macrophages, including those in late HA-rich inflammatory granulomas. CD44 is probably involved in early leukocyte infiltration, in tubular regeneration, and in macrophage activity, while HA modifies the physico-chemical environment of interstitial and migrating cells. Based on its presence in remodeling areas, the HA-CD44 pair may be implicated in persistent postichemic inflammation as observed in chronic allograft nephropathy.