2017
DOI: 10.1177/2399808317709280
|View full text |Cite
|
Sign up to set email alerts
|

Implementation and calibration of a new irregular cellular automata-based model for local urban growth simulation: The MUGICA model

Abstract: Cellular automata-based models have traditionally employed regular grids to represent the geographical environment when simulating urban growth or land use change. Over the last two decades, the scientific community has introduced the use of other spatial structures in an attempt to represent the processes simulated by these models more realistically. Cadastre parcels are a good choice when simulating urban growth at local scales, where pixels or regular cells do not represent the geographic space properly. Fu… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
10
0
2

Year Published

2017
2017
2024
2024

Publication Types

Select...
8

Relationship

1
7

Authors

Journals

citations
Cited by 13 publications
(12 citation statements)
references
References 51 publications
0
10
0
2
Order By: Relevance
“…Por su parte, respecto a los factores identificados, los modelos locales RLGP constataron la existencia de variabilidad espacial en los factores que explican la localización de los crecimientos urbanos de acuerdo con los resultados del taller colaborativo. Observando los resultados es posible deducir que, de entre las variables físicas, la distancia a ríos y la altitud han sido relevantes en gran parte de los modelos estudiados, mientras que la variable pendiente no ha presentado tal relevancia a pesar de su aplicación en numerosos estudios (Barreira-González et al, 2017;Hu & Lo, 2007;. Por su parte, las variables relativas al transporte público y la movilidad (distancia a estaciones de tren y autobús interurbano) presentan influencia en un mayor número de usos, dejando en un segundo plano la accesibilidad por carretera, a excepción de modelo que ajusta la distribución espacial del uso "residencial unifamiliar" en el escenario Altos niveles de inseguridad ciudadana y el uso…”
Section: Resultados De La Rlgpunclassified
“…Por su parte, respecto a los factores identificados, los modelos locales RLGP constataron la existencia de variabilidad espacial en los factores que explican la localización de los crecimientos urbanos de acuerdo con los resultados del taller colaborativo. Observando los resultados es posible deducir que, de entre las variables físicas, la distancia a ríos y la altitud han sido relevantes en gran parte de los modelos estudiados, mientras que la variable pendiente no ha presentado tal relevancia a pesar de su aplicación en numerosos estudios (Barreira-González et al, 2017;Hu & Lo, 2007;. Por su parte, las variables relativas al transporte público y la movilidad (distancia a estaciones de tren y autobús interurbano) presentan influencia en un mayor número de usos, dejando en un segundo plano la accesibilidad por carretera, a excepción de modelo que ajusta la distribución espacial del uso "residencial unifamiliar" en el escenario Altos niveles de inseguridad ciudadana y el uso…”
Section: Resultados De La Rlgpunclassified
“…The input data used to implement the submodels were selected to reflect the drivers of urban growth, empirical knowledge of urban growth trends in the study area [47,48,50,51], and the most commonly used variables in other studies [8,33]. These latter included the municipal boundaries (surface), zoning status (surface), and housing distribution (pixel) used by agents to assess specific environments and conditions, as well as the other spatial information indicated in Table 1 below.…”
Section: Prototype Structure Platform and Databasementioning
confidence: 99%
“…Cellular automata (CA), a collection of fixed cells regularly arranged in a cellular space, is the simplest model and a special type of automata. A two‐dimensional regular grid is the most common CA (Liu, 2009), however, other arrangements such as one‐dimensional CA (Di Gregorio & Festa, 1981), or CA with irregular cells (Barreira‐González, Aguilera‐Benavente, & Gómez‐Delgado, 2019) have been developed to represent objects and elements with different shape and size. Each of the regular spatial cells that constitute a CA can only have one of a finite number of possible values or states (e.g.…”
Section: Introductionmentioning
confidence: 99%
“…CA modeling is widely used due to the ability to accurately and efficiently replicate observed complex dynamics using a simple rule system, and the incorporation of socioeconomic and biophysical forces driving land use change (Newland, Maier, Newman, van Delden, & Zecchin, 2015). Since cities can be conceived of as consisting of a two‐dimensional regular grid of n × n cells (Liu, 2009), with simple transition rules generating complex urban development patterns due to the CA’s self‐organization and self‐reproduction ability, CA have been adopted in modeling various natural, social, and economic phenomena (Sidiropoulos & Fotakis, 2011), including urban modeling to simulate urban growth (Barreira‐González et al, 2019; Liu et al, 2018; Rienow, 2016; Xia, Wang, Zhang, & Zhang, 2018), understand processes of land use change (Roodposhti, Hewitt, & Bryan, 2020), and in various optimization problems (Afshar & Shahidi, 2009; Guo, Walters, Khu, & Keedwell, 2007; Heinonen & Pukkala, 2007; Mathey, Krcmar, Dragicevic, & Vertinsky, 2008; Strange, Meilby, & Bogetoft, 2001). Since the early 2000s, urban growth and land use change were simulated by SLEUTH, a modified CA model whose name is an acronym for the input data layers of slope, land use, exclusion, urban extent, transportation, and hillshade (Clarke, Gazulis, Dietzel, & Goldstein, 2007; Clarke, 2008a, 2008b).…”
Section: Introductionmentioning
confidence: 99%