2016 3rd Conference on Power Engineering and Renewable Energy (ICPERE) 2016
DOI: 10.1109/icpere.2016.7904872
|View full text |Cite
|
Sign up to set email alerts
|

Implementation of Axis Rotation Fast Decoupled Load Flow on distribution systems

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2016
2016
2022
2022

Publication Types

Select...
3
3

Relationship

0
6

Authors

Journals

citations
Cited by 7 publications
(2 citation statements)
references
References 10 publications
0
1
0
1
Order By: Relevance
“…Pada konsumen tegangan rendah pertumbuhan beban sangat pesat, sehingga keandalan gardu distribusi perlu perhatian lebih. Maka dari itu perlu menjaga keandalan dengan memperhatikan kebutuhan beban, agar suplai sesuai dengan permintaan beban di sisi konsumen [13][14] [15].…”
Section: Pendahuluanunclassified
“…Pada konsumen tegangan rendah pertumbuhan beban sangat pesat, sehingga keandalan gardu distribusi perlu perhatian lebih. Maka dari itu perlu menjaga keandalan dengan memperhatikan kebutuhan beban, agar suplai sesuai dengan permintaan beban di sisi konsumen [13][14] [15].…”
Section: Pendahuluanunclassified
“…Additionally, the convergence process may be compromised because of the weak coupling in active power/frequency and reactive power/voltage, a direct consequence of low X / R ratio, i.e.RXfalse→)(PVPδthickmathspaceandthickmathspace)(QδQV This feature of distribution networks may drive the Jacobian matrix to the singularity, demanding a high computational effort to inverse it or in the worst case, the convergence of NRM in the traditional form is no longer guarantee. To overcome this problem, the Levenberg–Marquardt method [37] or the axis rotation [38] may be used. Hence, the update of the state variable of combined secondary and primary controls is made through the Levenberg–Marquardt method as written in (26)][1em4ptnormalΔδnormalΔVnormalΔV1normalΔωref=bold-italicJnormalT×J+Λ×I1)(J][1em4pt1em4ptnormalΔPnormalΔQnormalΔQsysnormalΔPsys Additionally, Fig.…”
Section: Proposed Algorithmmentioning
confidence: 99%