Host plant resistant (HPR) crop varieties offer control of many insect pest species. However, the evolution of virulent biotypes capable of overcoming plant resistance poses challenges for the implementation of HPR. Widespread planting of HPR crops further reduces HPR efficacy by increasing selection pressure on pests, favoring the rapid proliferation of virulence. An analogous situation occurs in managing insect resistance to transgenic Bt crops, where planting of susceptible refuges effectively delays the evolution and spread of Bt resistance. We investigated the applicability of susceptible refuges in HPR as a tactic to manage virulent biotypes, using the soybean aphid (Aphis glycines Matsumura) as a model system. The virulent biotype 3 and avirulent biotype 1 were reared in greenhouse microcosms using a variety of refuge size, HPR gene, and biotype mixture treatments, allowing us to discern how the presence of a refuge alters the relative fitness and movement of biotypes both by themselves and in competition. The virulent biotype had greater relative fitness in 10 of 12 tested microcosms, with the greatest advantage observed in refuge-free microcosms. In microcosms with a refuge, avirulent fitness increased significantly as these biotypes moved to and used refuge plants. When the two biotypes were reared in the same microcosm, biotype 3's fitness increased significantly relative to when reared in isolation, while biotype 1's fitness was slightly, but not significantly, increased. Our findings suggested that while susceptible refuges would be incapable of reversing the proliferation of virulent biotypes, they could slow the spread of virulence by maintaining avirulence.