For safe operation of active space crafts, the space debris population needs to be continuously scanned, to avoid collisions of active satellites with space debris. Especially the low Earth orbit (LEO) shows higher risks of collisions due to the highest density of orbital debris. Laser ranging stations can deliver highly accurate distance measurements of debris objects allowing precise orbit determination and more effective collision avoidance. However, a laser ranging station needs accurate a priori orbit information to track an orbital object. To detect and track unknown orbital objects in LEO, here, a passive optical staring system is developed for autonomous 24/7 operation. The system is weather-sealed and does not require any service to perform observations. To detect objects, a wide-angle imaging system with 10° field of view equipped with an astronomical CCD camera was designed and set up to continuously observe the sky for LEO objects. The system can monitor and process several passing objects simultaneously without limitations. It automatically starts an observation, processes the images and saves the 2D angular measurements of each object as equatorial coordinates in the TDM standard. This allows subsequent initial orbit determination and handover to a laser tracking system. During campaigns at twilight the system detected up to 36 objects per hour, with high detection efficiencies of LEO objects larger than 1 m3. It is shown that objects as small as 0.1 m3 can be detected and that the estimated precision of the measurements is about 0.05° or 7 × the pixel scale.