Despite the existence of a plethora of cardiac functional techniques for characterization of mechanical structure, function and dysfunction, a parallel need exists for development of invasive and non-invasive tools and techniques to describe the left ventricular (LV) tissue material properties as these relate to the: (a) mechanical pumping function of the LV; (b) myocardial oxygen demand defining myocyte metabolic status; (c) coronary blood flow and its auto-regulation; (d) arhythmogenic risk; (e) cell-signaling pathways responsible for growth and remodeling during development and disease. Reinforcing basic physiology work, invasive catheterization experiments ] have also allowed determination of inotropic and lusitropic cardiac status, while Magnetic Resonance Imaging (MRI) experimentation, methodologies and technology advances have facilitated migration of such work to a non-invasive imaging platform, with tremendous potential for future basic science and translational research.Specifically, advances in MRI techniques (myocardial spin tagging [Zerhouni 1988, Axel 1989, DENSE [Aletras 1999], and harmonic phase imaging [Osman 1999]) have been introduced over the last decades to quantify cardiac function, allowing myocardial tracking, motion and strain quantification in normal and genetically engineered mice [Rockman 1991, Franco 1999, Brede 2001, Engel 2004, Wilding 2005. Critical to such work has been the validation of the underlying hypothesis of morphological and functional scaling from mouse to human (through consideration of global cardiac function, circulatory control, blood flow distribution, Ca 2+ storage and cycling, myosin light chain distribution, and force frequency reserve), for comparative studies.This chapter provides an overview of the major physiological issues and challenges for mouse MR imaging and discusses the most recent and major advances in conventional and new cardiac Magnetic Resonance imaging strategies, that ultimately allow quantification of motion, global, and regional cardiac function, strain, and elasticity, characterizing inotropic and lusitropic contractile function and dysfunction in humans and transgenic mice for image-based phenotyping.Specifically, this chapter attempts a detailed reference to the mouse as a research model, focusing on its genetic background and homology with the human genome and to the developmental and morphological differences between mouse and man, thus addressing cellular and global organ similarities and differences. As a basic determinant of structure, cardiac functional differences are associated, justified by carefully-controlled indices that determine integrative physiological control and functional activities, including metabolism, perfusion, angiogenetic, collateral flow, and coronary reserve. The importance and impact of anesthesia for image-based phenotyping in patho-physiological status is addressed with brief references to the possible mechanisms and cellular and sub-cellular target sites of anesthesia action. The section is complemented with...