Currently, freshwater zooplankton sampling and identification methodologies have remained virtually unchanged since they were first established in the beginning of the XX century. One major contributing factor to this slow progress is the limited success of modern genetic methodologies, such as DNA barcoding, in several of the main groups. This study demonstrates improved protocols which enable the rapid assessment of most animal taxa inhabiting any freshwater system by combining the use of light traps, careful fixation at low temperatures using ethanol, and zooplankton‐specific primers. We DNA‐barcoded 2,136 specimens from a diverse array of taxonomic assemblages (rotifers, mollusks, mites, crustaceans, insects, and fishes) from several Canadian and Mexican lakes with an average sequence success rate of 85.3%. In total, 325 Barcode Index Numbers (BINs) were detected with only three BINs (two cladocerans and one copepod) shared between Canada and Mexico, suggesting a much narrower distribution range of freshwater zooplankton than previously thought. This study is the first to broadly explore the metazoan biodiversity of freshwater systems with DNA barcodes to construct a reference library that represents the first step for future programs which aim to monitor ecosystem health, track invasive species, or improve knowledge of the ecology and distribution of freshwater zooplankton.