2018
DOI: 10.1007/s00477-018-1553-x
|View full text |Cite
|
Sign up to set email alerts
|

Improving monthly streamflow prediction in alpine regions: integrating HBV model with Bayesian neural network

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
25
0
1

Year Published

2019
2019
2021
2021

Publication Types

Select...
9

Relationship

0
9

Authors

Journals

citations
Cited by 40 publications
(26 citation statements)
references
References 76 publications
0
25
0
1
Order By: Relevance
“…In general, hydrological models have been proved effective for understanding hydrological process and providing physical information about the catchment. However, hydrological models rely on assumptions of mathematical equations that may fail to model the actual runoff generation process, especially when the forcing data are of low quality (e.g., sparse meteorological observations or reanalysis data) (Humphrey et al ., 2016; Ren et al ., 2018).…”
Section: Introductionmentioning
confidence: 99%
“…In general, hydrological models have been proved effective for understanding hydrological process and providing physical information about the catchment. However, hydrological models rely on assumptions of mathematical equations that may fail to model the actual runoff generation process, especially when the forcing data are of low quality (e.g., sparse meteorological observations or reanalysis data) (Humphrey et al ., 2016; Ren et al ., 2018).…”
Section: Introductionmentioning
confidence: 99%
“…In recent years, great effort has been made by scientists to combine machine learning hydrological models with conceptual models in which some hydrological processes are empirically described (Robertson et al 2013;Humphrey et al 2016;Ren et al 2018;Kumanlioglu & Fistikoglu 2019). For instance, Ren et al (2018) combined the HBV (Hydrologiska Byråns Vattenbalansavdelning) (Bergström 1992) model with artificial Bayesian neural networks, which enabled a better assessment of the uncertainties of hydrological predictions simulated on a monthly scale. Humphrey et al (2016) combined artificial Bayesian neural networks with the intermediate products of the GR4 J (Génie Rural à 4 paramètres Journalier) (Perrin et al 2003) model to resolve runoff routing and estimate streamflow on a daily scale.…”
mentioning
confidence: 99%
“…Tomé esta determinación para combinar la rapidez y eficiencia del lenguaje compilado C++, con el potente ambiente interactivo que ofrece R, un lenguaje con una enorme cantidad de paquetes y funciones que permiten que todo el flujo de trabajo hidrológico (desde la descarga de datos hasta el análisis de los resultados) se pueda concretar en un solo ambiente (Slater et al, 2019). Elegí seguir ampliando este modelo (HBV) por dos motivos: primero, ha sido usado de forma continua para estudios hidrológicos en zonas de montaña alrededor del mundo y, segundo, porque requiere relativamente pocos datos de entrada (temperatura del aire, precipitación, y evapotranspiración potencial), condición que resulta apropiada en zonas con escasez de información meteorológica como los Andes del Sur (el lector podrá encontrar algunas aplicaciones para otras regiones montañosas del planeta en Finger et al, 2015;Ren et al, 2018;Seibert et al, 2018;Stahl et al, 2008). hydroToolkit es un paquete para leer, graficar, manipular y procesar series hidro-meteorológicas provenientes de Argentina y Chile dentro del lenguaje R (R Core Team, 2020).…”
Section: Desarrollounclassified