Background
Cluster of differentiation 147 (CD147) overexpression plays a key role in the proliferation, differentiation, invasion, metastasis, and prognosis of hepatocellular carcinoma (HCC). The aim of this study was to explore the relationship between rs6757 and the HCC risk in the South Chinese population, and the functional significance of rs6757 by affecting the efficacy of microRNA-3976 (miR-3976) binding to the CD147 3′-UTR.
Methods
We performed a retrospective case-control study to analyze the association between rs6757 and the risk of HCC. We chose candidate microRNAs with the potential of interacting with rs6757 through a series of silico analyses. A luciferase reporter gene assay was implemented to detect the binding extent of microRNAs to each polymorphic allele of rs6757.
Results
An obvious association between rs6757 and the risk of HCC was detected in C vs. T (OR = 1.826, 95% CI [1.263–2.642]), CC vs. TT (OR = 4.513, 95% CI [1.510–13.489]), dominant genetic model (OR = 1.824, 95% CI [1.120–2.965]), and recessive genetic model (OR = 3.765, 95% CI [1.286–11.020]). Bioinformatics analysis indicated that miR-3976 binding sites containing the rs6757-T allele had lower free energies than those with the C allele, the lower free energies, the higher affinities. Luciferase activity was remarkably decreased by miR-3976 binding to the CD147 3′-UTR bearing rs6757 T allele, which could be reversed by miR-3976 inhibitors. Furthermore, miR-3976 reduced the luciferase expression in a manner of dose-dependent when cotransfected with constructs with the CD147-TT-pSICHECK2.
Conclusions
The research we have done suggests that rs6757 confers the CD147 allele-specific translational suppression by miR-3976, which provides a theoretical basis for antineoplastic therapy targeting CD147.