Laminitis is a life threating, extremely painful and frequently recurrent disease of horses which affects hoof structure. It results from the disruption of blood flow to the laminae, contributing to laminitis and in severe separation of bone from the hoof capsule. Still, the pathophysiology of the disease remains unclear, mainly due to its complexity. In the light of the presented data, in the extremally difficult process of tissue structure restoration after disruption, a novel type of progenitor cells may be involved. Herein, we isolated and performed the initial characterization of stem progenitor cells isolated from the coronary corium of the equine feet (HPC). Phenotype of the cells was investigated with flow cytometry and RT-qPCR revealing the presence of nestin, CD29, and expression of progenitor cell markers including SOX2, OCT4, NANOG and K14. Morphology of HPC was investigated with light, confocal and SEM microscopes. Cultured cells were characterised by spindle shaped morphology, eccentric nuclei, elongated mitochondria, and high proliferation rate. Plasticity and multilineage differentiation potential was confirmed by specific staining and gene expression analysis. We conclude that HPC exhibit in vitro expansion and plasticity similar to mesenchymal stem cells, which can be isolated from the equine foot, and may be directly involved in the pathogenesis and recovery of laminitis. Obtained results are of importance to the field of laminitis treatment as determining the repairing cell populations could contribute to the discovery of novel therapeutic targets and agents including and cell‐based therapies for affected animals.