Metabolomics technologies enable the examination and identification of endogenous biochemical reaction products, revealing information on the precise metabolic pathways and processes within a living cell. Metabolism is either directly or indirectly involved with every aspect of cell function, and metabolomics is thus believed to be a reflection of the phenotype of any cell. Metabolomics analysis of cells has many potential applications and advantages compared to currently used methods in the postgenomics era. Cell metabolomics is an emerging field that addresses fundamental biological questions and allows one to observe metabolic phenomena in cells. Cell metabolomics consists of four sequential steps: (a) sample preparation and extraction, (b) metabolic profiles of low-weight metabolites based on MS or NMR spectroscopy techniques, (c) pattern recognition approaches and bioinformatics data analysis, (d) metabolites identification resulting in putative biomarkers and molecular targets. The biomarkers are eventually placed in metabolic networks to provide insight on the cellular biochemical phenomena. This article analyzes the recent developments in use of metabolomics to characterize and interpret the cellular metabolome in a wide range of pathophysiological and clinical contexts, and the putative roles of the endogenous small molecule metabolites in this new frontier of postgenomics biology and systems medicine.