Two series of p-type polycrystalline skutterudites, Ba 0.15 Yb x Co 3 FeSb 12 and Yb y Co 3 FeSb 9 As 3 with varying Yb concentrations, were synthesized by solid-state reaction and then densified by hot pressing. The phase and stoichiometries of the resulting materials were characterized by powder X-ray diffraction and energy dispersive spectroscopy, while their high-temperature transport properties were investigated from 300 to 800 K. The Seebeck coefficients and electrical resistivities increased linearly with increasing temperature for the double-filled specimens. The Seebeck coefficients and electrical resistivities did not change very much for the As-substituted specimens. The thermal conductivity for all specimens decreased with increasing temperature up to 700 K, corresponding to the plateau in the Seebeck coefficient, and then increased again due to bipolar diffusion. We find that double filling is a more feasible approach to thermoelectric property optimization than single filling with As substitution.