In this article, we propose a formal method for evaluating the asymptotic behavior of a shape functional when a thin tubular ligament is added between two distant regions of the boundary of the considered domain. In the contexts of the conductivity equation and the linear elasticity system, we relate this issue to a perhaps more classical problem of thin tubular inhomogeneities: we analyze the solutions to versions of the physical partial differential equations which are posed inside a fixed "background" medium, and whose material coefficients are altered inside a tube with vanishing thickness. Our main contribution from the theoretical point of view is to propose a heuristic energy argument to calculate the limiting behavior of these solutions with a minimum amount of effort. We retrieve known formulas when they are available, and we manage to treat situations which are, to the best of our knowledge, not reported in the literature (including the setting of the 3d linear elasticity system). From the numerical point of view, we propose three different applications of the formal "topological ligament" approach derived from these expansions. At first, it is an original way to account for variations of a domain, and it thereby provides a new type of sensitivity for a shape functional, to be used concurrently with more classical shape and topological derivatives in optimal design frameworks. Besides, it suggests new, interesting algorithms for the design of the scaffold structure sustaining a shape during its fabrication by a 3d printing technique, and for the design of truss-like structures. Several numerical examples are presented in two and three space dimensions to appraise the efficiency of these methods.