In recent years, the catalyst efficiency of hydrogen evolution reaction (HER) has been extensively studied. However, the stability of catalysts at high current densities is still a challenge. Herein, layered Ni−Co−P was electrodeposited on carbon fiber paper (CFP) via cyclic voltammetry (CV). This low‐cost electrode exhibits high efficiency and excellent durability for HER in 1 M KOH. To achieve current densities of 10, 100, 500, and 1000 mA cm−2, Ni−Co−P/CFP required overpotentials of 49, 95, 170, and 295 mV, respectively. The layered structure allows the catalyst to fall off layer by layer. After the outer layer of catalyst falls off, the inner layer of catalyst will be exposed to continue working. After 300 h of HER at 1000 mA cm−2, Ni−Co−P/CFP still has a regular morphology and high efficiency. Our work shows that layered Ni−Co−P/CFP has excellent prospects for practical applications.