Due to their unique structures and properties, three-dimensional hydrogels and nanostructured particles have been widely studied and shown a very high potential for medical, therapeutic and diagnostic applications. However, hydrogels and nanoparticulate systems have respective disadvantages that limit their widespread applications. Recently, the incorporation of nanostructured fillers into hydrogels has been developed as an innovative means for the creation of novel materials with diverse functionality in order to meet new challenges. In this review, the fundamentals of hydrogels and nanoparticles (NPs) were briefly discussed, and then we comprehensively summarized recent advances in the design, synthesis, functionalization and application of nanocomposite hydrogels with enhanced mechanical, biological and physicochemical properties. Moreover, the current challenges and future opportunities for the use of these promising materials in the biomedical sector, especially the nanocomposite hydrogels produced from hydrogels and polymeric NPs, are discussed.
Multifunctional and multiresponsive hydrogels have presented a promising platform to design and fabricate smart devices for application in a wide variety of fields. However, their preparations often involve multistep preparation of multiresponsive polymer precursors, tedious reactions to introduce functional groups or sophisticated molecular designs. In this work, a multifunctional boronic acid-based cross-linker bis(phenylboronic acid carbamoyl) cystamine (BPBAC) was readily prepared from inexpensive commercially available 3-carboxylphenylboronic acid (CPBA) and cystamine dihydrochloride, which has the ability to cross-link the cis-diols and catechol-containing hydrophilic polymers to form hydrogels. Due to the presence of the reversible and dynamic boronate ester and disulfide bonds, the obtained hydrogels were demonstrated to not only possess pH, glucose, and redox triresponsive features, but also have autonomic self-healing properties under ambient conditions. Moreover, we can modulate the rheological and mechanical properties by simply adjusting the BPBAC amount. The features, such as commercially available starting materials, easy-to-implement approach, and versatility in controlling cross-linking network and mechanical properties, make the strategy described here a promising platform for fabricating multifunctional and smart hydrogels.
A turn-on orange-red fluorescent nanosensor based on rhodamine B derivative-functionalized graphene quantum dots (RBD-GQDs) has been successfully synthesized for Fe(3+) detection with high sensitivity and selectivity. By connecting with GQDs, the water solubility, sensitivity, photostability, and biocompatibility of RBD are drastically improved. The most distinctive feature of the RBD-GQDs, which sets them apart from other previously reported fluorophores or GQDs, is that they with the detection limits as low as 0.02 μM are demonstrated as a Fe(3+) turn-on fluorescent nanosensor in cancer stem cells. Fe(3+) binding to such GQDs (RBD-GQDs-Fe(3+)) with orange-red fluorescence of 43% quantum yield were demonstrated to be the biomarkers for cancer stem cell imaging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.