Location-based services allow users to perform check-in actions, which not only record their geo-spatial activities, but also provide a plentiful source for data scientists to analyze and plan more accurate and useful geographical recommender system. In this paper, we present a novel Time-aware Route Planning (TRP) problem using location check-in data. The central idea is that the pleasure of staying at the locations along a route is significantly affected by their visiting time. Each location has its own proper visiting time due to the category, objective, and population. To consider the visiting time of locations into route planning, we develop a three-stage time-aware route planning framework. First, since there is usually either noise time on existing locations or no visiting information on new locations constructed, we devise an inference method, LocTimeInf, to predict and recover the location visiting time on routes. Second, we aim to find the representative and popular time-aware location-transition behaviors from user check-in data, and a Time-aware Transit Pattern Mining (TTPM) algorithm is proposed correspondingly. Third, based on the mined time-aware transit patterns, we develop a Proper Route Search (PR-Search) algorithm to construct the final time-aware routes for recommendation. Experiments on Gowalla check-in data exhibit the promising effectiveness and efficiency of the proposed methods, comparing to a series of competitors.