With the growth of digital music, the development of music recommendation is helpful for users. The existing recommendation approaches are based on the users' preference on music. However, sometimes, recommending music according to the emotion is needed. In this paper, we propose a novel model for emotion-based music recommendation, which is based on the association discovery from film music. We investigated the music feature extraction and modified the affinity graph for association discovery between emotions and music features. Experimental result shows that the proposed approach achieves 85% accuracy in average.
With the growth of location-based services and social services, lowsampling-rate trajectories from check-in data or photos with geotag information becomes ubiquitous. In general, most detailed moving information in low-sampling-rate trajectories are lost. Prior works have elaborated on distant-time location prediction in highsampling-rate trajectories. However, existing prediction models are pattern-based and thus not applicable due to the sparsity of data points in low-sampling-rate trajectories. To address the sparsity in low-sampling-rate trajectories, we develop a Reachability-based prediction model on Time-constrained Mobility Graph (RTMG) to predict locations for distant-time queries. Specifically, we design an adaptive temporal exploration approach to extract effective supporting trajectories that are temporally close to the query time. Based on the supporting trajectories, a Time-constrained mobility Graph (TG) is constructed to capture mobility information at the given query time. In light of TG, we further derive the reachability probabilities among locations in TG. Thus, a location with maximum reachability from the current location among all possible locations in supporting trajectories is considered as the prediction result. To efficiently process queries, we proposed the index structure Sorted Interval-Tree (SOIT) to organize location records. Extensive experiments with real data demonstrated the effectiveness and efficiency of RTMG. First, RTMG with adaptive temporal exploration significantly outperforms the existing pattern-based prediction model HPM [2] over varying data sparsity in terms of higher accuracy and higher coverage. Also, the proposed index structure SOIT can efficiently speedup RTMG in large-scale trajectory dataset. In the future, we could extend RTMG by considering more factors (e.g., staying durations in locations, application usages in smart phones) to further improve the prediction accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.