With the growth of location-based services and social services, lowsampling-rate trajectories from check-in data or photos with geotag information becomes ubiquitous. In general, most detailed moving information in low-sampling-rate trajectories are lost. Prior works have elaborated on distant-time location prediction in highsampling-rate trajectories. However, existing prediction models are pattern-based and thus not applicable due to the sparsity of data points in low-sampling-rate trajectories. To address the sparsity in low-sampling-rate trajectories, we develop a Reachability-based prediction model on Time-constrained Mobility Graph (RTMG) to predict locations for distant-time queries. Specifically, we design an adaptive temporal exploration approach to extract effective supporting trajectories that are temporally close to the query time. Based on the supporting trajectories, a Time-constrained mobility Graph (TG) is constructed to capture mobility information at the given query time. In light of TG, we further derive the reachability probabilities among locations in TG. Thus, a location with maximum reachability from the current location among all possible locations in supporting trajectories is considered as the prediction result. To efficiently process queries, we proposed the index structure Sorted Interval-Tree (SOIT) to organize location records. Extensive experiments with real data demonstrated the effectiveness and efficiency of RTMG. First, RTMG with adaptive temporal exploration significantly outperforms the existing pattern-based prediction model HPM [2] over varying data sparsity in terms of higher accuracy and higher coverage. Also, the proposed index structure SOIT can efficiently speedup RTMG in large-scale trajectory dataset. In the future, we could extend RTMG by considering more factors (e.g., staying durations in locations, application usages in smart phones) to further improve the prediction accuracy.
Abstract. With increasingly prevalent mobile positioning devices, such as GPS loggers, smart phones, and GPS navigation devices, a huge amount of trajectories data is collected. Users are able to obtain the various location-based services by uploading their trajectories. In this paper, we address that a user's movement behavior is able to discover by their similar shape trajectories and resulted in some regions frequently stay in common, called relevant stay regions. Once a set of stay regions discovered, we can predict the next region where the user intends to go and provide location-based information of the next stay in advance, such as traffic status, targeted advertises, sightseeing recommendations, and so on. Prior works have elaborated on discovering stay region from the whole crowd trajectories and then exploring the relations between the regions to describe the movement patterns for location prediction. However, the trajectories pass the same region may not have the similar movement behavior. Thus, we propose a framework to discover stay regions relevant to the specific movement behavior and then applied in location prediction, called Region Modeling and Mobility Prediction. The proposed framework includes two modules: region modeling and mobility prediction. In the region modeling module, we develop shape clustering method to group the similar trajectories from historical data and then explore the stay region model from trajectory clusters. Based on the discovered region model, the mobility prediction module provide a cluster selection algorithm and several prediction strategies to generate the topk relevant stay regions. Experiments results on real datasets demonstrate the effectiveness and accuracy of our proposed model on detecting next stay region, comparing with other baseline methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.