Tolerance to herbivory-the ability of plants to maintain fitness despite herbivore damage-is expected to change during the life cycle of plants because the physiological mechanisms underlying tolerance to herbivory are linked to growth, and resource allocation to growth changes throughout ontogeny. We used the model plant Arabidopsis thaliana to test two hypotheses: that tolerance increases as plants grow, and that tolerance decreases at the onset of reproduction. We chose three accessions previously reported to vary for resistance to herbivory in order to explore whether tolerance and resistance are inversely related. Cabbage looper (Trichoplusia ni) larvae were allowed to feed on plants at either the four-leaf, six-leaf, or 1st-flower developmental stage until 50% of the leaf area was removed. Overall, we found a trend for increased tolerance with ontogenetic stage, but there were important differences among accessions in their response to herbivory at different stages. Tolerance did not decrease with the onset of flowering, nor did we find any correlation between resistance and tolerance levels. Three main plant traits correlated strongly with tolerance: stem mass, an earlier onset of reproduction and a longer fruiting period. This study suggests there may be considerable variation in ontogenetic patterns of tolerance in natural populations of A. thaliana, and warrants further investigations with more accessions or natural populations, and detailed measurements of traits purported to contribute to tolerance in our quest to understand the mechanisms of tolerance to herbivory.