An electrochemical sensor for detection of three monohydroxylated polycyclic aromatic hydrocarbons (OH−PAHs) was fabricated by electrochemical reduction of graphene oxide (E‐rGO) on screen‐printed electrode (SPE). The E‐rGO film presents typical wrinkled structure with porous and cavity‐like nanostructure, providing large surface area, effective π‐electron system and high electrical conductivity. The developed E‐rGO/SPE sensor exhibits outstanding sensing performance for the target OH−PAHs, 2‐hydroxynaphthalene, 3‐hydroxyphenanthrene, and 1‐hydroxypyrene, within a linear range varying from 50–800 nM, 50–1150 nM, and 100–1000 nM, and with a limit of detection (LOD) of 10.1 nM, 15.3 nM, and 20.4 nM (S/N=3), respectively. The electrochemical sensor possesses excellent stability, acceptable reproducibility, and good anti‐interference ability. Additionally, the proposed sensor can be applied to the analysis of OH−PAHs in the urine samples with recoveries of 98.1–105.9 %.