The effect of insulator sleeve material on x-ray emission from a 2.3 kJ Mather type plasma focus device operated in argon-hydrogen mixture is investigated. The time and space resolved x-ray emission characteristics are studied by using a three channel p-i-n diode x-ray spectrometer and a multipinhole camera. The x-ray emission depends on the volumetric ratio of argon-hydrogen mixture as well as the filling pressure and the highest x-ray emission is observed for a volumetric ratio 40% Ar to 60% H 2 at 2.5 mbar filling pressure. The fused silica insulator sleeve produces the highest x-ray emission whereas nonceramic insulator sleeves such as nylon, Perspex, or Teflon does not produce focus or x-rays. The pinhole images of the x-ray emitting zones reveal that the contribution of the Cu K␣ line is weak and plasma x-rays are intense. The highest plasma electron temperature is estimated to be 3.3 and 3.6 keV for Pyrex glass and fused silica insulator sleeves, respectively. It is speculated that the higher surface resistivity of fused silica is responsible for enhanced x-ray emission and plasma electron temperature.