Immunotargeting of PLAP-expressing tumours was studied for two radioiodinated, highly specific anti-PLAP monoclonal antibodies, 7E8 and 17E3, differing 10-fold in affinity, as well as for 7E8 F(ab')2 fragments. An anti-CEA monoclonal antibody or anti-CD3 F(ab')2 fragments were used as controls. Specific and non-specific targeting was examined in nude mice simultaneously grafted with PLAP-positive tumours derived from MO4 1-4 cells, and CEA-positive tumours, derived from 5583-S cells. Results indicated that (1) MO4 1-4 tumours, with a stable expression of PLAP on the plasma membrane, represent a useful new in vivo model for immunodirected tumour targeting; (2) differences in antibody affinity for PLAP in vitro are not reflected in antibody avidity for tumour cells in vivo; and (3) excellent selective and specific localisation of the PLAP-positive tumours is achieved when 7E8 F(ab')2 fragments are used. The high tumour/blood ratios (10.7 +/- 3.9 at 46 h after injection) were due to a much faster blood clearance of 7E8 F(ab')2 fragments. At this time point, the mean tumour/non-tumour tissue ratio was as high as 34.5, and the mean specific localisation index was 29.0. As expected, the F(ab')2 fragments provided high tumour imaging efficiency on gamma camera recording. These data imply important potentials of the PLAP/anti-PLAP system for immunolocalisation and therapy in patients, but also emphasise that in vitro criteria alone are not reflected in in vivo tumour localisation capacities of antibodies.
Images
Figure 1
Figure 3
Figure 4