Purpose
The purpose of this study is to contribute with experimental study of the effects of binary and ternary combinations of river sand (RS), crushed sand (CS) and dune sand (DS) on the physical and mechanical performances of self-compacting concrete (SCC) subjected to acidic curing environments, HCl and H2SO4 solutions.
Design/methodology/approach
Five SCCs were prepared with the combinations 100% RS, 0.8RS + 0.2CS, 0.6RS + 0.2CS + 0.2DS, 0.6RS + 0.4DS and 0.6CS + 0.4DS. The porosity of sand, fluidity, deformability, stability, compressive strength and sorptivity coefficient were tested. SCCs cubic specimens with a side length of 10 cm were submerged in HCl and H2SO4 acids, wherein the concentration was 5%, for periods of 28, 90 and 180 days. The resistance to acid attack was evaluated by visual examination, mass loss and compressive strength loss.
Findings
The results showed that it is possible to partially substitute the RS with CS and DS in the SCC, without strongly affecting the fluidity, deformability, stability, compressive strength and durability against HCl and H2SO4 attack. The two combinations, 0.8RS + 0.2CS and 0.6RS + 0.2CS + 0.2DS, improved the compactness and the resistance to acid attacks of SCC. Consequently, the improvement in SCC compactness, by the combination of RS, CS and DS, decreased the sorptivity coefficient of SCC and increased its resistance to acid attacks, in comparison with that made only by RS.
Originality/value
The use of RS is experiencing a considerable increase in line with the development of the country. To satisfy this demand, it is necessary to substitute this sand with other materials more abundant. The use of locally available materials is a very effective way to protect the environment, improve the physico-mechanical properties and durability of SCC and it can be a beneficial economical alternative. Few studies have addressed the effect of the binary and ternary combination of RS, CS and DS on the resistance to acid attacks of SCC.