We studied the effect of a thin Ta layer on the perpendicular magnetic anisotropy (PMA) of composite FM1/Ta/FM2 magnetic structures, where FM1 represents the subsystem MgO/CoFeB, and FM2 denotes a [Co/Pd]6 multilayer. The stack without Ta spacer layer shows no PMA. Once a Ta layer is inserted between the thin CoFeB layer and the [Co/Pd]6 multilayer, PMA is observed. The perpendicular magnetization loops show squareness ratios close to unity, indicating the presence of almost complete perpendicular anisotropy. These hysteresis loops also show sharp switching characteristics, indicating that the MgO/CoFeB bilayer and the [Co/Pd]6 multilayer are ferromagnetically coupled together. The coercive field Hc of the composite structure increases as Ta thickness increases. Our results show that Ta layer is essential for integrating MgO/CoFeB and [Co/Pd]6 into a composite magnetic structure with perpendicular anisotropy.