Achieved levels of Silicon-based passivated emitter and rear cell (PERC) solar cells' laboratory and module-level conversion efficiencies are still far from the theoretically achievable Auger limit of 29.4% for silicon solar cells, prominently due to emitter recombination and resistive losses. The emitter region in PERC devices is formed by using either ion implantation followed by a diffusion process or POCl3 diffusion. In ion-implanted emitter-based PERC, the process variables such as dose, energy, diffusion time, and temperature play a vital role in defining the characteristics of the emitter region. Detailed investigation of these parameters could provide a pathway to mitigate the recombination as well as resistive losses; however, it requires a considerable budget to optimize these parameters through a purely experimental approach. Therefore, advanced industrial standard process and device simulation are perceived in this work to carry out the comprehensive study of process variables. Investigation of ion implantation and diffusion process parameters on the PV performance of an upright pyramid textured, industrial standard stacked dielectric passivated PERC solar cell is carried out to deliver 22.8% conversion efficiency with improved PV parameters such as short circuit current density (JSC) of 40.8 mA/cm2, open-circuit voltage (VOC) of 686 mV, and fill-factor (FF) of 81.54% at optimized implantation and diffusion parameters, such as implantation dose of 5×1015 cm-2 with energy 30 keV followed 950 oC diffusion temperature and 30 min of diffusion time. The performance of the optimized PERC device is compared with already published large area screen printed contact-based device. This work may open up a window for the experimental work to understand the influence of process parameters on the emitter region to develop the highly efficient PERC solar cell in the future.