The research on decomposition characteristics of SF6 and its by-products have great significance to the operation, maintenance, condition assessment and fault diagnosis of power equipment. In this paper, the particle composition models of SF6, SF6/polytetrafluoroethylene (PTFE), SF6/PTFE/O2, SF6/PTFE/H2O, and SF6/PTFE/O2/H2O were established by using Gibbs free energy minimization method, and the effects of trace H2O and O2 impurities and PTFE vapour on SF6 by-products were studied by the models. In order to verify the correctness of the simulation results, a series of breaking experiments were carried out on a 40.5 kV SF6 circuit breaker, and a gas chromatograph was used to detect and analyse the SF6 by-products. It was found that when PTFE vapour is involved in the arc plasma, the main by-product after arc quenching is CF4, and the molar fractions of C2F6 and C3F8 are very low. When O2 is involved, the main by-products are SOF2, SO2 and SO2F2, and a small amount of CO and CO2 was also produced. When H2O is involved, the main by-products in simulation are SOF2, SO2 and HF, and a small amount of SO2, CO2, CO, SO2F2 and H2 was also produced. The experimental results are in good agreement with the above results.