Characterization of black pepper accessions using isozymesSeventy and eight accessions of black pepper, including some wild species, were analyzed through isozyme electrophoresis in polyacrylamide gel, aiming to distinguish phenotypic differences to discriminate and select accessions. The enzymatic systems SKDH, GOT, ACO, ACP, PGI, FUM, 6PGDH and G6PDH were studied. The polymorphism of isozymes was evaluated based on number of alozymes with different mobility for each enzymatic system, the frequencies of alozymes within each enzymatic system in relation to the total of bands of the system and, the analysis of the genetic similarity, based on the absence or presence of bands. All the enzymatic systems presented good resolution and definition of bands, with emphasis on SKDH, 6GPDH, PGI and the ACP. All the systems presented sufficient polymorphism to characterize and to identify accessions or groups with little number of accessions, where the GOT system presented better variability of alozymes. On the other hand, FUM system revealed only three alozymes and four profiles. Fifty seven percent of alozymes are efficient to characterize and to identify clones or groups of clones. About sixty four percent of the analyzed accessions can be identified per one to six individual phenotypes of enzymatic systems. The analysis of similarity indicated the G1, G2 and G3 groups as the most divergent, being appropriate for intra or interspecific crossings aiming to obtain superior clones.