Hallucinogenic drugs such as lysergic acid diethylamide (LSD) have profound effects on humans including
INTRODUCTIONLysergic acid diethylamide (LSD) is an hallucinogenic drug that transiently but powerfully alters human perception, behavior, and mood at extremely low doses. Certain aspects of the behavior elicited by acute doses of LSD closely resemble symptoms of mental disorders such as schizophrenia (Breier 1995). Despite extensive research over the past four decades, the mechanism of action of hallucinogenic drugs still largely remains a mystery. The behavioral effects of LSD are believed to arise in part from agonist activity at the 5-HT 2A , 5-HT 2C , and 5-HT 1A receptor subtypes (Burris et al. 1991; KrebsThomson et al. 1998;Titeler et al. 1988), but if, and how, these interactions affect cognitive functions remains unknown. In addition to actions at serotonin receptors, LSD has high affinity for dopamine receptors and has been shown to act as an agonist at these receptors (Giacomelli et al. 1998;Watts et al. 1995). Because LSD is a unique ligand that can simultaneously bind to serotonin and dopamine receptor subtypes implicated in both normal and abnormal human behaviors, it is an excellent tool for probing the biochemical basis for behavior.Simply increasing brain levels of serotonin, however, does not produce hallucinogenic effects. Recent work has demonstrated that while LSD binds to the same re- NO . 5 LSD-influenced Gene Expression 635 ceptor sites as the endogenous ligand serotonin, it has the capacity to activate different intracellular signaling cascades (Backstrom et al. 1999). Because intracellular signaling cascades influence gene expression, LSDinduced signaling events within cells may inappropriately alter gene expression, which in turn may lead to changes in the physiological status of the neurons, ultimately altering the processes of cognition. Certain behavioral effects of LSD resemble paranoid schizophrenia in humans. This particular subset of mood alterations occurs within the "second phase . . . of the LSD experience" as defined by Freedman, and may be specific for LSD (Freedman 1984). These delayed "second phase" effects could result from transient changes in gene expression. Thus, identifying and characterizing these genes could prove to be important in understanding mechanisms underlying how hallucinogens such as LSD alter behavior. In addition, understanding these mechanisms may lead to the identification of novel therapeutic targets for treatment of mental disorders.We took a broad approach to investigating and identifying genes that are altered by an acute dose of LSD in the mammalian brain. First, we investigated the expression of the mRNAs of the 5-HT receptor subtypes thought to mediate hallucinogenic effects in animal models (5-HT 1A,2A,2C ), as well as, specific gene expression of immediate early genes predicted to be affected by LSD. Next, we performed a DNA microarray screen to identify gene expression influenced by LSD at a more global level. For each gene identified,...