This paper presents the design and simulation of a single-chip integrated MEMS accelerometer gyroscope by integrating a Coriolis vibratory ring gyroscope and a differential resonant accelerometer into one single-chip structure, measuring both the acceleration and the angular velocity (or the angle). At the same time, it has the advantages of small volume, low cost, and high precision based on the characteristics of a ring gyroscope and resonant accelerometer. The proposed structure consists of a microring gyroscope and a MEMS resonant accelerometer. Tthe accelerometer is located inside the gyroscope and the two structures are concentric. The operating mechanisms of the ring gyroscope and the resonant accelerometer are first introduced. Then, the whole structure of the proposed single-chip integrated accelerometer gyroscope is presented, and the structural components are introduced in detail. Modal analysis shows the resonant frequencies of upper and lower DETFs in resonant accelerometer are 28,944.8 Hz and 28,948.0 Hz, and the resonant frequencies of the ring gyroscope (n=2) are 15,768.5 Hz and 15,770.3 Hz, respectively. The scale factor of the resonant accelerometer is calculated as 83.5 Hz/g by the analysis of the input–output characteristic. Finally, the thermal analysis fully demonstrates that the single-chip integrated accelerometer gyroscope has excellent immunity to temperature change.