2001
DOI: 10.1016/s0362-546x(01)00630-7
|View full text |Cite
|
Sign up to set email alerts
|

Integrable systems and their recursion operators

Abstract: In this paper we discuss the structure of recursion operators. We show that recursion operators of evolution equations have a nonlocal part that is determined by symmetries and cosymmetries. This enables us to compute recursion operators more systematically. Under certain conditions (which hold for all examples known to us) Nijenhuis operators are well defined, i.e., they give rise to hierarchies of infinitely many commuting symmetries of the operator. Moreover, the nonlocal part of a Nijenhuis operator contai… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
61
0
1

Year Published

2005
2005
2024
2024

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 48 publications
(62 citation statements)
references
References 39 publications
0
61
0
1
Order By: Relevance
“…Иерархии симметрий можно построить, последовательно применяя ре-курсионный оператор R к затравочным или корневым симметриям K (1) и K (2) -начальным точкам для иерархии симметрий [32]. Коммутативность векторных по-лей, отвечающих K (1) и K (2) , была установлена в работе [33].…”
Section: рекурсионный оператор симметрии и законы сохранения для ураunclassified
“…Иерархии симметрий можно построить, последовательно применяя ре-курсионный оператор R к затравочным или корневым симметриям K (1) и K (2) -начальным точкам для иерархии симметрий [32]. Коммутативность векторных по-лей, отвечающих K (1) и K (2) , была установлена в работе [33].…”
Section: рекурсионный оператор симметрии и законы сохранения для ураunclassified
“…For γ ∈ V * we define [2,3,11,28] its Lie derivative along Q ∈ V as L Q (γ) = γ ′ (Q) + Q ′ † (γ), see [3,28] for more details and for the related complex of formal calculus of variations. For Q ∈ V and γ ∈ V * we have, see e.g.…”
Section: Consider Now the Algebra Matmentioning
confidence: 99%
“….. Notice that, unlike e.g. [11,16], we do not require the hierarchy in question to be time-independent, and our Proposition 1 and Theorem 1 can be successfully employed for proving locality of the so-called variable coefficients hierarchies, including for instance those constructed in [17,18] and [2], cf. Example 2 below.…”
Section: Introductionmentioning
confidence: 95%
See 2 more Smart Citations