In this study, we address the problem of matching patterns in Kufic calligraphy images. Being used as a decorative element, Kufic images have been designed in a way that makes it difficult to be read by non-experts. Therefore, available methods for handwriting recognition are not easily applicable to the recognition of Kufic patterns. In this study, we propose two new methods for Kufic pattern matching. The first method approximates the contours of connected components into lines and then utilizes chain code representation. Sequence matching techniques with a penalty for gaps are exploited for handling the variations between different instances of sub-patterns. In the second method, skeletons of connected components are represented as a graph where junction and end points are considered as nodes. Graph isomorphism techniques are then relaxed for partial graph matching. Methods are evaluated over a collection of 270 square Kufic images with 8,941 sub-patterns. Experimental results indicate that, besides retrieval and indexing of known patterns, our method also allows the discovery of new patterns.