This paper presents the scheduling dispatch of a microgrid (MG), while considering renewable energy, battery storage systems, and time-of-use price. For the risk evaluation of an MG, the Value-at-Risk (VAR) is calculated by using the Historical Simulation Method (HSM). By considering the various confidence levels of the VAR, a scheduling dispatch model of the MG is formulated to achieve a reasonable trade-off between the risk and cost. An Improved Bee Swarm Optimization (IBSO) is proposed to solve the scheduling dispatch model of the MG. In the IBSO procedure, the Sin-wave Weight Factor (SWF) and Forward-Backward Control Factor (FBCF) are embedded in the bee swarm of the BSO to improve the movement behaviors of each bee, specifically, its search efficiency and accuracy. The effectiveness of the IBSO is demonstrated via a real MG case and the results are compared with other methods. In either a grid-connected scenario or a stand-alone scenario, an optimal scheduling dispatch of MGs is carried out, herein, at various confidence levels of risk. The simulation results provide more information for handling uncertain environments when analyzing the VAR of MGs.