In recent years, distributed generation, as clean natural energy generation and cogeneration system of high thermal efficiency, has increased due to the problems of global warming and exhaustion of fossil fuels. Many of the distributed generations are set up in the vicinity of the customer, with the advantage that this decreases transmission losses. However, output power generated from natural energy, such as wind power, photovoltaics, etc., which is distributed generation, is influenced by meteorological conditions. Therefore, when the distributed generation increases by conventional control techniques, it is expected that the voltage change of each node becomes a problem. Proposed in this paper is the optimal control of distribution voltage with coordination of distributed installations, such as the load ratio control transformer, step voltage regulator (SVR), shunt capacitor, shunt reactor, and static var compensator. In this research, SVR is assumed to be a model with tap changing where the signal is received from a central control unit. Moreover, the communication infrastructure in the supply of a distribution system is assumed to be widespread. The genetic algorithm is used to determine the operation of this control. In order to confirm the validity of the proposed method, simulations are carried out for a distribution network model with distributed generation (photovoltaic generation).Index Terms-Centralized control, coordinated control, distribution system, genetic algorithm (GA), voltage/reactive power control.
This paper presents an output power smoothing method by a simple coordinated control of DC-link voltage and pitch angle of a wind energy conversion system (WECS) with a permanent magnet synchronous generator (PMSG). The WECS adopts an AC-DC-AC converter system with voltage-source converters (VSC). The DC-link voltage command is determined according to output power fluctuations of the PMSG. The output power fluctuationsin low-and high-frequency domains are smoothed by the pitch angle control of the WECS, and the DClink voltage control, respectively. By using the proposed method, the
wind turbine blade stress is mitigated as the pitch action in high-frequency domain is reduced. In addition, the DC-link capacitor size is reduced without the charge/discharge action in lowfrequency domain. A chopper circuit is used in the DC-link circuit for stable operation of the WECS under-line fault. Effectiveness of the proposed method is verified by the numerical simulations.Index Terms-Permanent magnet synchronous generator, pitch control, power smoothing, wind energy conversion system.
The photovoltaic (PV) generator exhibits a nonlinear -characteristic and its maximum power (MP) point varies with solar insolation. In this paper, a feedforward MP-point tracking scheme is developed for the coupled-inductor interleaved-boost-converter-fed PV system using a fuzzy controller. The proposed converter has lower switch current stress and improved efficiency over the noncoupled converter system. For a given solar insolation, the tracking algorithm changes the duty ratio of the converter such that the solar cell array voltage equals the voltage corresponding to the MP point. This is done by the feedforward loop, which generates an error signal by comparing the instantaneous array voltage and reference voltage corresponding to the MP point. Depending on the error and change of error signals, the fuzzy controller generates a control signal for the pulsewidth-modulation generator which in turn adjusts the duty ratio of the converter. The reference voltage corresponding to the MP point for the feedforward loop is obtained by an offline trained neural network. Experimental data are used for offline training of the neural network, which employs a backpropagation algorithm. The proposed peak power tracking effectiveness is demonstrated through simulation and experimental results. Tracking performance of the proposed controller is also compared with the conventional proportional-plus-integral-controller-based system. These studies reveal that the fuzzy controller results in better tracking performance.Index Terms-Coupled-inductor interleaved boost converter, feedforward loop, fuzzy controller, maximum power (MP) operation, neural network, proportional plus integral controller, solar cell array (SCA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.