Purpose: We sought to develop a triage strategy to reduce negative and indeterminate multiparametric magnetic resonance imaging scans in patients at risk for prostate cancer. Materials and Methods: In this retrospective study we evaluated 865 patients with no prior prostate cancer diagnosis who underwent prostate multiparametric magnetic resonance imaging between 2009 and 2017. Age, prostate volume, prostate specific antigen and prostate specific antigen density were assessed as predictors of positive multiparametric magnetic resonance imaging, defined as PI-RADSÔ (Prostate Imaging Reporting and Data System) version 2/Likert score 4 or greater. The cohort was split into a training cohort of 605 patients and a validation cohort of 260. The optimal threshold to rule out positive multiparametric magnetic resonance imaging was chosen to achieve a negative predictive value greater than 90%. Results: All clinical variables were significant predictors of positive multiparametric magnetic resonance imaging (p <0.05). Prostate specific antigen density outperformed other parameters in diagnostic accuracy and did not significantly differ compared to a multivariate model (AUC[0.74 vs 0.75). At prostate specific antigen density greater than 0.078 ng/ml 2 sensitivity, specificity, positive and negative predictive values were 94%, 29%, 22% and 95%, respectively, resulting in 25% fewer scans (64 of 260). In the multivariate model sensitivity, specificity, positive and negative predictive values were 85%, 32%, 22% and 91%, respectively, resulting in 29% fewer scans (75 of 260). Biopsies in men who would not have undergone multiparametric magnetic resonance imaging according to our proposed strategies revealed 2 clinically significant prostate cancers using prostate specific antigen density and 1 using the multivariate model. Conclusions: In patients at risk for prostate cancer applying a multivariate prediction model or a prostate specific antigen density cutoff of 0.078 ng/ml 2