The capacity to generate variation in ploidy and reproductive mode was compared in facultatively apomictic versus sexual maternal plants that coexist in two model populations. The population structure was studied in polyploid hybrid swarms comprised of Hieracium pilosella (usually sexual, less commonly apomictic), H. bauhini (apomictic), and their hybrids (sexual, apomictic, or sterile). Relationships among established biotypes were proposed on the basis of their DNA ploidy level/ chromosome number, reproductive mode and morphology. Isozyme phenotypes and chloroplast DNA haplotypes were assayed in the population that was richer in hybrids. The reproductive origin of seed progeny was identified in both sexual and apomictic mothers, using alternative methods: the karyological, morphological and reproductive characters of the cultivated progeny were compared with those of respective mothers, or flow cytometric seed screening was used. In both populations, the progeny of sexual mothers mainly retained a rather narrow range of ploidy level/ chromosome number, while the progeny of facultatively apomictic mothers was more variable. The high-polyploid hybrids, which had arisen from the fertilization of unreduced egg cells of apomicts, mainly produced aberrant non-maternal progeny (either sexually and/or via haploid parthenogenesis). Apparently, such versatile reproduction resulted in genomic instability of the recently formed high-polyploid Folia Geobot (2009) 44:281-306 hybrids. While the progeny produced by both true apomictic and sexual mothers mostly maintained the maternal reproductive mode, the progeny of those 'versatile' mothers was mainly sexual. Herein, we argue that polyploid facultative apomicts can considerably increase population diversity.