Chemical dynamics simulations, based on both an analytic potential energy surface (PES) and direct dynamics, were used to investigate the intrinsic non-RRKM dynamics of the Cl products were fit with multi-exponential functions. The intrinsic non-RRKM dynamics is more pronounced for the simulations with the analytic PES than by direct dynamics, with the populations for the former and latter primarily represented by tri-and bi-exponential functions, respectively. For the analytic PES and direct dynamics simulations, the intrinsic non-RRKM dynamics is more important for the isomerization pathway to form ClCH 3 -Br − than for dissociation to Cl − + CH 3 Br. Since the decomposition probability of Cl − -CH 3 Br is non-exponential, the Cl − -CH 3 Br unimolecular rate constant depends on pressure, with both high and low pressure limits. The high pressure limit is the RRKM rate constant and for the simulations with the analytic PES the rate constant decreased by a factor of 3.0, 5.6, and 4.3 in going from the high to low pressure limit for total energies of 40, 60, and 80 kcal/mol. For the direct dynamics simulations these respective factors are 2.4, 1.4, and 1.2. A separable phase space model with intermolecular and intramolecular complexes describes some of the simulation results, but overall models advanced for intrinsic non-RRKM dynamics give incomplete representations of the intermediate and product populations vs. time determined from the simulations.