2020
DOI: 10.48550/arxiv.2010.15285
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Intrinsic Sliced Wasserstein Distances for Comparing Collections of Probability Distributions on Manifolds and Graphs

Abstract: Collections of probability distributions arise in a variety of statistical applications ranging from user activity pattern analysis to brain connectomics. In practice these distributions are represented by histograms over diverse domain types including finite intervals, circles, cylinders, spheres, other manifolds, and graphs. This paper introduces an approach for detecting differences between two collections of histograms over such general domains. To this end, we introduce the intrinsic slicing construction … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0

Year Published

2021
2021
2023
2023

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(6 citation statements)
references
References 25 publications
0
6
0
Order By: Relevance
“…Stable distributions vary in their suitability for the important practical applications of combined testing. Distributions with left and right heavy tails, including the CCT [13,15], exhibit sensitivity to p-values near 1 which is a serious limitation in many practical scenarios. The class of extremal Stable distributions (skewness parameter |β| = 1) that have just one heavy tail therefore appear more suitable.…”
Section: Discussionmentioning
confidence: 99%
See 2 more Smart Citations
“…Stable distributions vary in their suitability for the important practical applications of combined testing. Distributions with left and right heavy tails, including the CCT [13,15], exhibit sensitivity to p-values near 1 which is a serious limitation in many practical scenarios. The class of extremal Stable distributions (skewness parameter |β| = 1) that have just one heavy tail therefore appear more suitable.…”
Section: Discussionmentioning
confidence: 99%
“…Insensitivity to p-values near 1. Despite its advantages over the HMP procedure in terms of its convenient formula and exactness for any number of constituent p-values, the CCT suffers the drawback of undesirable sensitivity to p-values at or near 1 [12,13,15]. Unfortunately this is probably a fatal flaw for the elegant CCT in many settings because generally p-values are defined conservatively such that Pr(p ≤ α|H 0 ) ≤ α; they are said to be 'superuniform' [16].…”
Section: The Lévy Combination Testmentioning
confidence: 99%
See 1 more Smart Citation
“…Wasserstein distance (WD) is a calculated metric useful for comparing two distributions and the resulting value is equal to the average distance between two corresponding distributions [ 31 ]. The unit of analysis is the full distribution and the larger WD, the greater the difference between the two distributions [ 32 , 33 , 34 ]. Wasserstein distance is equal to 0 when two distributions perfectly overlap and is greater when distributions are farther apart.…”
Section: Methodsmentioning
confidence: 99%
“…There exists sliced variants [8,16] of partial optimal transport [19,27], where only a fraction of mass is transported, and a sliced version [20] of multi-marginal optimal transport [10,12,30], considering the transport between several measures instead of only two. For optimal transport on Riemannian manifolds, sliced Wasserstein distances based on the push-forward of the eigenfunctions of the Laplacian have been proposed in [77]. Especially for shape and graph analysis, sliced optimal transport has been transferred to the Gromov-Wasserstein setting [86], which more generally defines a metric between metric measure spaces [11,55,83].…”
Section: Introductionmentioning
confidence: 99%