With the development of social networks and online mobile communities, group recommendation systems support users' interaction with similar interests or purposes with others. We often provide some advices to the close friends, such as listening to favorite music and sharing favorite dishes. However, users' personalities have been ignored by the traditional group recommendation systems while the majority is satisfied. In this paper, a method of group recommendation based on external socialtrust networks is proposed, which builds a group profile by analyzing not only users' preferences, but also the social relationships between members inside and outside of the group. We employ the users' degree of disagreement to adjust group preference rating by external information of social-trust network. Moreover, having a discussion about different social network utilization ratio, we proposed a method to work for smaller group size. The experimental results show that the proposed method has consistently higher precision and leads to satisfactory recommendations for groups.