2018
DOI: 10.31489/2018m3/75-82
|View full text |Cite
|
Sign up to set email alerts
|

Inverse source problems for a wave equation with involution

Abstract: Inverse source problems for a wave equation with involution A class of inverse problems for a wave equation with involution is considered for cases of two different boundary conditions, namely, Dirichlet and Neumann boundary conditions. The existence and uniqueness of solutions of these problems are proved. The solutions are obtained in the form of series expansion using a set of appropriate orthogonal basises for each problem. Convergence of the obtained solutions is also justified.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?