In addition to revealing the stretch-mode bands of the smallest mixed clusters of HCl and HBr (HX) with water, the ragout-jet FTIR spectra of dense mixed water-acid supersonic jets include bands that result from the interaction of HX with larger water clusters. It is argued here that low jet temperatures prevent the water-cluster-bound HX molecules from becoming sufficiently solvated to induce ionic dissociation. The molecular nature of the HX can be deduced directly from the observed influence of changing from HCl to HBr and from replacing H2O with D2O. Furthermore, the band positions of HX are roughly coincidental with bands assigned to molecular HCl and HBr adsorbed on ice nanocrystal surfaces at temperatures below 100 K. It is also interesting that the HX band positions and widths approximate those of HX bound to the surface of amorphous ice films at <60 K. Though computational results suggest the adsorbed HX molecules observed in the jet expansions are weakly distorted by single coordination with surface dangling-oxygen atoms, on-the-fly trajectories indicate that the cluster skeletons undergo large-amplitude low-frequency vibrations. Local HX solvation, the extent of proton sharing, and the HX vibrational spectra undergo serious modulation on a picosecond time scale.