2021
DOI: 10.48550/arxiv.2106.06134
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Is Homophily a Necessity for Graph Neural Networks?

Abstract: Graph neural networks (GNNs) have shown great prowess in learning representations suitable for numerous graph-based machine learning tasks. When applied to semi-supervised node classification, GNNs are widely believed to work well due to the homophily assumption ("like attracts like"), and fail to generalize to heterophilous graphs where dissimilar nodes connect. Recent works design new architectures to overcome such heterophily-related limitations, citing poor baseline performance and new architecture improve… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

1
13
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
5
2

Relationship

0
7

Authors

Journals

citations
Cited by 14 publications
(26 citation statements)
references
References 41 publications
1
13
0
Order By: Relevance
“…The behaviors of graph neural networks have been investigated in the context of label homophily for connected node pairs in graphs (Ma et al, 2021b). Label homophily in graphs is typically defined to characterize the similarity of connected node labels in graphs.…”
Section: Label and Sensitive Homophily In Graphsmentioning
confidence: 99%
See 3 more Smart Citations
“…The behaviors of graph neural networks have been investigated in the context of label homophily for connected node pairs in graphs (Ma et al, 2021b). Label homophily in graphs is typically defined to characterize the similarity of connected node labels in graphs.…”
Section: Label and Sensitive Homophily In Graphsmentioning
confidence: 99%
“…From the perspective of fairness, we also define the sensitive homophily coefficient to represent the sensitive attribute similarity among connected node pairs. Informally, the coefficient for label homophily and sensitive homophily are defined as the fraction of the edges connecting the nodes of the same class label and sensitive attributes in a graph (Zhu et al, 2020;Ma et al, 2021b). We also provide the formal definition as follows:…”
Section: Label and Sensitive Homophily In Graphsmentioning
confidence: 99%
See 2 more Smart Citations
“…Although GNNs have achieved remarkable results on a wide range of scenarios, their ability to model different properties of graphs has not been analyzed. Many previous studies show that GNNs are more effective in dealing with graphs with good homophily property (i.e., connected nodes are more similar), while their ability to capture heterophily property (i.e., connected nodes are more opposite) is often doubtful [15,16,21,25,32,34]. In addition, even for the graphs with good homophily property, existing works do not model them well enough because they usually treat the homophily as a global property which could be consistently satisfied everywhere in the whole graph.…”
Section: Introductionmentioning
confidence: 99%