Since the first issue of TRANSFUSION in 1961, there has been a tremendous expansion in not only the number of blood group antigens identified but also in our knowledge of their biochemical basis, function, and more recently, associated DNA changes. As certain techniques became available, our ability to discover and elucidate blood group antigens and appreciate their contribution to biology became possible. In particular, Western blotting, monoclonal antibodies, cloning, and polymerase chain reaction-based assays have led to an explosion of our knowledge base. The study of blood groups has had a significant effect on human genetics where they serve as useful markers in genetic linkage analyses. Indeed blood groups have provided several "firsts" in certain aspects of genetics. Blood group-null phenotypes, as natural human knockouts, have provided valuable insights into the importance of red blood cell membrane components. This review summarizes key aspects of the discovery of blood groups; the inconsistent terminology that has arisen; and the contribution of blood groups to genetics, safe transfusion, transplantation, evolution, and biology.